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An exact solution of the problem of the initial development of plastic strains 
near the tips of cleavage (normal) cracks is given, Under plane strain conditions 
the plastic strains are assumed to be concentrated along two narrow slip bands 

issuing symmetrically from the tip of the crack at some angle OL to its continu- 
ation. Such a shape of the plastic domain can be considered as a certain appro- 
ximation to the “spread” plastic zone ; for some materials it possibly corresponds 
more closely to the essence of the phenomenon. The length of the slip line and 

the angle a are determined (for instance, the angle a turns out to be equal 72”). 
The influence of a side load on the plastic domain can be also analyzed success- 
fully in this model. It is shown, in particular, that the opening at the tip of the 
crack depends essentially on the side load ; therefore, the extensively used crite- 

rion C. 0. D. (the crack opening displacement) is not a local criterion even in 
the case of an arbitrarily small plastic zone. The technique of integral trans- 

forms and the Wiener-Hopf method are used to solve the problem. 

1. Introduction. Let us consider a homogeneous isotropic body with arbitrary 
cleavage cracks. We shall assume the body material to be ideally elastic-plastic and to 
satisfy the Tresca-Saint Venant plasticity condition, and the strains to be small. The 

cracks will be represented as zero-thickness mathematical slits. Hence, for arbitrarily 
small external loads near the crack contour, a plastic domain will originate. 

For sufficiently small external loads, the characteristic linear dimension of the plastic 

zone will be small compared to the characteristic linear dimension of the body and the 
cracks, In this case, the formulation of the asymptotic problem on the fine structure of 
the tip of a crack [l] is valid ; the crack can be considered as a semi-infinite slit along 

the negative I semiaxis in the x?*--plane, free of external loads, with an additional load- 
ing condition determined from the solution of the purely elastic problem imposed at in- 
finity. The solution of this plane problem describes the field of stresses and strains in 

the neighborhood of any point of a smooth crack contour to within the accuracy of a fac- 
tor (the stress intensity factor or). A number of problems were, for example, examined 
in such a formulation in [l - 51. 

It is assumed below that the plastic strains are concentrated along narrow rectilinear 
slip bands issuing from the tip of the crack. The length of the plastic bands is evidently 
enlarged with the increase of the external load and should be determined during solution 

of the problem. We consider the number of slip bands to equal two (Fig. 1) ; they are 
symmetric relative to the plane of the crack and are at angle a to its continuation (the 
problem is considered locally symmetric). The length of the slip band in the zy-plane 
can be taken as the unit of the linear scale, and thereby set equal to unity without loss 

of generality. 
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Such a formulation of the-problem can be considered, on the one hand, as approximate 
and descriptive of the spread plastic zone near the tip of the crack. On the other hand, 
some results indicate that plastic strains in certain materials have the tendency to con- 
centrate in narrow slip bands (which are lines of d~con~nuity of the displacement). In 
this realm the tests on thin low-carbon steel sheets carried out by mugdale, who dis - 
covered and computed such slip bands in the continuation of a crack [6], are classical. 
The paper [‘I], in which two more side plasticity bands in addition to the Dugdale band 
are detected for a further increase in the load, is a further essential development ofthese 
views, Let us note that if the Dugdale band corresponds to the plastic flow typical for 
the plane state of stress (i.e. for ideally thin plates), then the two Leonov-Vitvitskii- 
Iarema side bands [7] correspond to the plastic flow characteristic for plane strain (i. e. 
for infinitely thick plates). 

Formulation of the problem with side plasticity bands moreover permits explanation 
and computation of the effect of biaxiality of the state of stress which it is difficult to 
conceive in other approaches (perhaps even more exact ones). 

2, Derivrtfon of the Wiener-Hopf equrtion, Let us write the boundary 
conditions for the considered problem in the case of two plasticity bands (see Fig. 1)by 
assuming that the stresses vanish at infinity in a given manner: 

0 = f n, clg = Tra = 0 (2.1) 

6 = 0, 2.80 = 0, 'tre = 0 (2.2) 

e = * cc, [u,l = [T,J = 0, heI = 0 (2.3) 

8=4-a, I O<r<k %I = f, 
- oo>r>*, tarI = 0 (2.4) 

The square brackets denote here a jump in the quantity enclosed in the brackets during 
passage through the line of discontinuity, z, is the 
shear yield point, and Kr is the stress intensity factor, 
Conditions (2.3) and (2.4) mean that in the side plas- 
ticity bands a discontinuity of only the tangential 
component of the displacement is admitted, while the 
shear stress equals the yield point. The symmetrycon- 
dition (2.2) permits us to restrict the examination to 
the upper haff-plane 0 < 8 ( n for solving the 
problem. 

Fig. 1 
We apply the Mellin integral transform (p is a com- 

plex parameter) 

to the statics equations and the compatibility condition. Consequently, we obtain the 
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following fourth order differential equation for the function ;j, (p, 0) : 

~+l~P+v+(P-wl 2: - + (p + I)2 (p - I)2 & = 0 

The functions a,., Tre are expressed in terms of & thus: 

The solution of (2. 6) is 

Qe(P, Q> = 4(p)cos(p+ l)e + 442(p)cos(p - l)e + 

A2 (p) sin (p + 1) 8 + A4 (p) sin (p - 1) 8 for o < 6 Q cz 

& (P, 0) = &(P) COS (P $ 1) (0 - rC> + B2 (21) COS (P - 1) (0 - fi) i- 

B,(p)sin(p+1)(e--n)+B*(p)sin(p--1)(e--n) 

for a 60 <n 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

Here A,, . . ., Ad, B1, . . ., Bd are unknown functions of the parameter p which 
are determined from the boundary conditions. Any seven of these are expressed in terms 
of one unknown function by using seven “through’ boundary conditions (2.1) - (2.3) 
transformed with respect to r. Noting that according to Hooke’s law 

au 
2 = w [(I - v)O, - v&] 

i?r 

%I 1+v 
-z-z ar E (P + 1) 

(2.10) 

(E is Young’s modulus and v is the Poisson’s ratio, we find the following equations 
from the transformed boundary conditions (2.1) - (2.3) by using (2.8) - (2.10) : 

A3 = A4 = 0, B, + Bz = 0, B, (p + 1) + B4 (p - 1) = 0 
A, cos (p + 1) a + A3 cos (p - 1) a = B, cos (p + 1) (a - 

4 + & ~0s (P - 1) (a - 4 + B3 sin (P + 1) (a - 4 + 
BQ sin (p - 1) (a - n) 

AI (p + 1) sin (p + 1) a + A2 (p - 1) sin (p - 1) a = 

;; (P + 1) sin (P + 1) (a - 4 + & (P - 1) sin (P - 1) (a - 
- B3 (p + 1) cos (p + 1) (a - n) - B4 (p - 1) cos (p - 

1) (a - 4 
A, (p + l)%in (p + 1) a + A2 (p - 1)3 sin (p - 1) CL = B1 (p -I- 

l)Ssin (p + 1) (a - n) + Bz (p - 1)3 sin (p - l),(a - n) - 

B,(p + 1)3 cos (p + 1) (a - n) - B4 (p - 1)3 cos (p - 1) (a - n) 

We write the solution of this system of equations as 

A, (p) = D (p) [p cos pa sin a - sin p (rc - a) cos (pn - a)1 (2.11) 

A,(P) = --D(P)[P cos pu sin a - sin p (x - cc) Cos (pn + a)] 

4 (P) = - D (P) cos p x [p cos pa sin a + sin pa cos al 

B,(P) = - 5 D (p) (p - I) sin a sin pn cos pa 
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(D @) is an unknown unction of P) . We introduce the following functions: 

a[r-(p) = f[o,(r, a)]rPdr, O+(p) = l;TTe(r, 4rPdr (2.12) 
0 1 

Here the function CD- (p) is evidently analytic in the half-plane Rep > - 1, and 
the function CD+ (p) is analytic in the half-plane Re p ( _ r/s on the basis of con- 
dition (2.5). By using the functions introduced, the boundary conditions (2.4) are writ- 
ten as 

e---a, ra,l=uY(p), ;,s=Q+(p)+& (2.13) 

The conditions (2.13) can be written by using (2. S), (2.9) and f2. li) as 

W(p) = - 2py D(p), CD+(p) + z, 5 

P+* 
‘* G(p) D(p) (2.14) 

G(P) = 2 & pn {(p sin 2a + sia 2pa) [sin 2p (;7d - LX) - p sin 2olf 

2 (cos 2pa - cos 2a) [sins p (7c - k) - p* sins &I} 

Eliminating the function D @) from the two relationship in (X14), we obtain the fol- 
lowing Wiener-Hopf functional equation: 

a+ (P) + &- = - j- tg ~PG (P) a- (P) (2.15) 

3, Solutton of the boundary vrlus problem. Thefunctionalequation 
(2.15) holds in the strip --1 < Re p ( - 1/2, - oo ( Im p ( + 00. The func- 

tion G (p) in this equation possesses the fo~owing properties: 
a) the function (; @) is meromorphic, its second order poles are the points p = 

*:1, f2, * * . with the exception, perhaps, of roots of the equation p’tg a = - tg pa; 
b) the tknction has neither poles nor zeros anywhere on the line p = - Ifs f 

it{--m<t<+oo); 
c) p + 00 along the line p = - ‘fz + it , the function G (p) tends to unity. 

Let us examine the contour L consisting of the line p = - ‘/a + it and a left 
semicircle of small radius with center at the point p =- ‘1s in the p plane (Fig. 2). 

The direction of traversing the contour L agrees with the direction of the imaginary 
axis. The domains to the left and right of the contour L will be denoted by D, and 
D ,respectively. The function G (p) can be represented on the contour L as . 

G @I = ;: I;; (P E L) (3.1) 

em G * !f?$&= s f G* (19 (P E D,) 
G- (~1 (P E D_) 

(G*(+ cm) = 1) (3.2) 
L 

Here G+ (p) and G- (P) are entire functions, analytic and without zeros in the domains 
D, and &_ ,respectively. As 1 t 1 + 00 , ~e.~n~ti~ in G (f) decreases exponent- 
ially on L , hence the integral (3.2) converges rapidly, 

We will use the following known representaticrr (see [S]): 

P ctg w = --fyi b) K- (P) (3.3) 

(3.4) 
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The function K+ @) is analytic and has zeros for Re p < - r/z, while the function 
K- (p) is analytic and has no zeros for Re p > - 1. Moreover, we have according to 
the Stirling formula 

Kf(p)=(--Ppr4-W7 K-(q)=(+PP+w)? p--*-J (3.5) 

By using the factorizations (3.1) and (3.3) we can write the functional equation (2.15) as: 

@+ (4 K+ (4 + rsK+ (4 

PG+ (P) P (P + 1) G+(P) = &;* @EL) (3.6) 

We now use the following representation : 

K+(P) 
i” (P -I 1) G+(P & [ -g$ -I- ;: :-_;; ] - @ ;;;;;1_,, (3.7) 

Substituting (3.7) into (3.6), we obtain 

@+ (n) K+ (D) 

PG+(P) 
+2E..__- 

[ 

K+(n) Kf(-4) 

I,+ 1 PG'tP) + G+(-1) = 1 (3.8) 

(P E 0 

The left side of this equality is analytic in D, and the right side in D_. On the basis 
of the principle of analytic continuation, they equal the same function which is analytic 

Imp. 

D_ 

111 

in the whole plane. In order to find this single analytic 
function it is necessary to study the behavior of the 

sought functions @- (p) and a+ (p) as p -+ 00. To 
do this, we consider a stress concentration ( *) charac- 
terized by elastic asymptotics for cracks with a plastic 

& filler [I] to exist in the general case at the head ofthe 

-ti R Rep slip line. This elastic asymptotics (local or hyperfine 
structure) is defined completely by the single stress 

D* L 
intensity factor krr. The critical value of this factor 
k:rrc (slip ductility) determines the resistance of the 
material to development of slip surfaces therein. We 

Fig. 2 consider the quantity lirrc as a specified constant of 
the material, When such a resistance is negligible, it 

can be considered that krr, = 0 and the stresses will be bounded at the end of the slip 

band in this particular case. According to [9], the following asymptotics holds: 

(3.9) 

On the basis of (3,9),(3.2) and (3.5), the single analytic function in (3.8) tends tothe 
constant h-&l/Y as I_I 3 00 , and therefore, it equals this constant identically in the 
whole p plane according to tne tiouville theorem. 

Therefore, the solution of the boundary value problem can be written as 

*) This concentration may be due to the accumulation of dislocations in the form of a 
Cottrell cloud (it can be essential for materials of the low-carbon steel type, for exam- 
Pk). 
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CD+ (p) = - zspc+ (I’) 
(P + 1) K+ (P) 

(3.10) 

W(p) = - 4*sG- (~1 K- (~1 K+ (-- 1) _ 2 ~~-kIIG_ tPj K_ cPJ 
(P+l)G+(---1) 

Hence, determining the function D (p) by using (2.14), we find the Mellin transform 
of the stresses and the stresses themselves after inverting the transform. 

4. Anoly#ir of the 8olutlon. The unknown parameter krr, which should 
be determined from the condition (2.5) at infinity,enters into the solution (3.10). It is 
still more convenient to use the second formula in (2.12) and the known asymptotics 

for cleavage cracks 
8=a, r400, GO= 

%I 
F sin cc cos -$ 
2 )/2nr 

(4.1) 

By using a theorem of Abel-type it is hence easy to find 

CD+(p) = - 
Krsinacosr/2 

2 VZ (P i- l/2) ’ 
According to (3.4), we have 

K+(p) = - 
I (S/z) (P + l/2) f/c, 

r ('/2) 

The first formula of (3.10) yields 

1 
p4-- 

2 
(4.2) 

1 
Jr-+--- 

2 (4.3) 

@,+ (p) = 

- k,,G+ (-l/2) T,G+ (--'/a) 

2 -@-P (S/s) (p $. 1/2) - r P/2) (P + 72) 
X (4.4) 

WI+ (-l/2) 
K+(--) - G+(_l,) I p+-+ G+(-i) 2 1 

Equating (4.2) and (4.4), we find 

r (9/z) 

- ‘I1 = - Kr G+ (_ l/2) 1/p 
sinacos+ + (4.5) 

C 

Passing to the dimensional variables and equating the local intensity factor to the con- 

stant JcrrC of the material, we obtain an equation for determining the length d of the 
slip band dl,r = - krrc + Kr sinacosal2 [2G+(-11/2)]-1 

2 )/rz;K+(- i)(G+(-I)]-1 (4.6) 

In particular, if the stress concentration at the head of the slip band is absent, i. e. 
krrc = 0, the formula is simplified 

?sd”’ v/R sinacosa/2G+(--1) 

K, 
=4 G+ (- '/2) 

(4.7) 

Transforming (3.2), we can find 
_. 

G+(- 1) = expf\ (Ln [P(t) + ma(t)] + 4tamg3#}& (4,81 
0 

G+(-+_ VT 

00 

m (t) dt 

1/T sin a cos a / 2 s 
arctg -- 

Q (0 t 
0 



672 G. P. Chereplnov 

where 

q (t) = -_A__- 
2 ch% ti-c I 

sin2 a (cos a + ch 2at) [ch 2t (n - a) - cos a] + 

(t sin 2a + cos u sh 24 [t sin 2& + cos a sh 2t (IC - a)] + 

2 (cos a ch 2at - cos 24 
[ 

cos2 +ch2t(n:-a)- 

sin2 $- sh2 t (it - a) - (1/a - P) sin2 a] + 

sin a sh 2at [sin a sh 2t (7t - cc) - 2t sin2 a] 
I 

m 0) = 2& { sina(cos 01 + ch 2at)[t sin 2cic + cos a sh 2t(n-a)]- 

(t sin 2u + cos o! sh 2~) sin a [ch 2t (n - a) - cos a] + 

2 sin a sh 2at 
iI 

cos2 +ch2t(fi-a) - sin2 +h2t(wza)- 

(% - la) sin2 a] - (cos a ch 2at - cos 24 x 

[sin a sh 2t (zc - a> - 2t sin2 CC] 
I 

The dependence of the dimensionless length d, (equal ta r,sd/&s) on the angle GI 
determined on a computer by formulas (4.7) and (4.8) is shown in Fig. 3. As is seen, 

Fig. 3 

this dependence has a maximum for 

a, = 72” (the error does not exceed 
1’ >; this maximum equals 0.046. It is 

natural to assume #at the slip lines near 
the tip of a crack in a homogeneousand 

isotropic body (in strength), develop in 
the direction of this maximum, i, e. at 
the angle a, = 72” to the cont~uation 
of the crack, The length of the plastic 

segments hence equals 

d = 0.~6~2~/~~2 (4.9) 

It should be noted that these results 
are quite close to the numerical results 

[4] obtained by means of flow theory for 
an ideal elastic-plastic material with a 

Mises condition by the finite element 

method. We recall that according to their analysis for v = 0.3 , the maximum spacing 
of the spread plastic “ears” from the tip of the crack equals approximately 0.044 

Pr TQ-2, where the deviation of the corresponding maximum radius vector from the 

crack direction is approximately 70”. 
The considered problem is easily generalized by taking account of the homogeneous 

side tension of the body along the crack by an arbitrary stress o,. For ideally brittle bo- 
dies this tension does not influence the local asymptotics of the field near the tip of the 
crack. This influence is easily computed in this problem. To do this it is sufficient to 
add the tension field ox to the perturbed field which is evidently obtained from the con- 
sidered solution, if the quantity ‘tS is replaced everywhere therein by t,+4/2 or sin 2a. 
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In particular, according to (4.7), the length of the slip band is equal 

d=z 
K,z sin2 a co@ u / 2 [G+ (- 1)]2 

32 [G+ (- l/t) I2 (Ts + I/:! ~5% sin 2r)2 (4.10) 

As is seen, other conditions being equal, the side tension diminishes the size of the 

plastic slip band. 
Let us calculate the opening of the crack 2v, at its tip for a = a, = 72”. By using 

(2.10),(2.12),(3. lo), we find 

d au 
2v,=2sina, $ dr= 

s[ I 
16 (I- ~‘9 KI’ sin a,G- (0) 

Ez a&+ (- 1) d* (a*) = (4.11) 

0 
s 

0.2228 (i -;; Kr2 $$) 
s 

G-(O)= exp{-$[ (In[Pa(t)+me.(t)]-44tarctg~}~} 
0 

Evaluating the integral on a computer, we obtain 

2v, = 0.2222 (I --if! K12 
* 

(4.12) 

In particular, for v = 0.3 we have 
KI= 2v, = 0.202 r 

s 
(4.13) 

which almost agrees with the corresponding numerical solution [4] for the spread plastic 
zone (in this solution the factor in (4.13) equals 0.21). Taking into account the side 

tension or , formula (4.12) can be written as follows: 
(1 - v”) Kra 

2vo = o*22’2 E (z; + iI2 6, sin 2x*) (4.14) 

By assumption, the size of the plastic domain is quite small ; therefore, the beginning 
of crack development is determined by the concept of Kr,: as soon as the quantity Kr 
equals the fracture ductility of the material Kr, the crack starts to grow. According to 
(4.14), the magnitude of the critical opening of the crack (C. 0. D. ) will hence not be 
a constant of the material since it will still depend on the external load 6,. The result 
presented shows therefore that the widely used criterion C. 0. D. is not universal andnot 
local. 

The author is grateful to V. D. Kuliev for verifying some calculations and for discus- 
sing the research. 
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The problem of a macroscopic description of the dynamics of an elastic compo- 
site medium without using assumptions concerning the uniformity of the mean 
stress-strain states, the magnitudes of the fluctuations and the statistics of the 

medium parameters [l] is considered. Operator relationships between the mean 
stress and strain fields allow the application of operator algebra which is well 
developed in creep theory [Z]. It is shown that a quasistatic (matrix) part of the 
elastic operators, calculated by the method of replacement of variables, yields 
exact values of the elastic moduli of the composite, where the equations obtained 
are analogous to the self-consistent field equations [3 - 53. The interrelation 
between the mean dimensions of the inhomogeneities and the lengths of the in- 
cident and scattered waves is investigated for a specific correlation function. 

Analytical com~tational formulas for the elastic moduli of composite media 
have been obtained in [3 - 51 on the basis of classical solutions and the self- 
consistent field method. Exact formulas for the stochastic model have first been 
obtained in [6] on the basis of astrongly isotropic model, and on the basis of an 
equivalent singular approximation in [7]. The derivation of exact formulas re- 
quires homogeneity of the mean stress-strain states and summation of infinite 
sequences of the perturbation series (operators, in the general case) in the cases 
considered. 

The method of replacing the field variables by their polarized values turns 
out to be equivalent to a partial summation of definite kinds of Feynman dia- 
grams. It is established by adirect computation on the basis of the compatibility 
equations that the macroscopic moduli determined by the equations obtained 
are exact. A direct analytical comparison with formulas presented in 17, 8] is 

possible for two-phase composites ; numerical computations for certain poly- 
crystals of cubic symmetry yield the same values as the formulas in [6]. 


